Abstract
Some of the many-body effects in the formation of multiply charged ions in a laser field have been taken into account: inelastic tunneling, collective tunneling, and magnetic moment projection relaxation of the atomic core. Strong fields with an intensity exceeding 1017 W cm−2 are considered when the magnetic component of the laser field acts on the free motion of a photoelectron; therefore, the formation of multiply charged ions through rescattering becomes unlikely. Numerical calculations have been performed for Ar9+ … Ar13+, Kr19+ … Kr23+, Rb10+, and Rb11+ ions. A significant contribution of collective tunneling, which was not observed in weaker fields investigated previously, has been revealed. Allowance for collective tunneling is shown to reduce the intensity leading to saturation by more than 10%. In this case, the yield of multiply charged Rb ions changes by an order of magnitude, while the yield of multiply charged Ar and Kr ions changes by more than a factor of 2. Comparison with experimental data on the formation of argon ions under the action of a linearly polarized laser pulse is made.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have