Abstract

Meiotic sex chromosome inactivation (MSCI) during spermatogenesis is characterized by transcriptional silencing of genes on both the X and Y chromosomes in mid to late pachytene spermatocytes1. MSCI is believed to result from meiotic silencing of unpaired DNA because the X and Y chromosomes remain largely unpaired throughout first meiotic prophase2. However, unlike X-chromosome inactivation in female embryonic cells, where 25–30% of X-linked structural genes have been reported to escape inactivation3, previous microarray4- and RT-PCR5-based studies of expression of >364 X-linked mRNA-encoding genes during spermatogenesis have failed to reveal any X-linked gene that escapes the silencing effects of MSCI in primary spermatocytes. Here we show that many X-linked miRNAs are transcribed and processed in pachytene spermatocytes. This unprecedented escape from MSCI by these X-linked miRNAs suggests that they may participate in a critical function at this stage of spermatogenesis, including the possibility that they contribute to the process of MSCI itself, and/or that they may be essential for post-transcriptional regulation of autosomal mRNAs during the late meiotic and early postmeiotic stages of spermatogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call