Abstract

The current work numerically investigates commercial polycrystalline Ag/17vol.%SnO composite tensile deformation behavior with available experimental data. Such composites are useful for electric contacts and have a highly textured initial material status after hot extrusion. Experimentally, the initial sharp fiber texture and the number of 3-twins were reduced due to tensile loading. The local inhomogeneous distribution of hardness and Young’s modulus gradually decreased from nanoindentation tests, approaching global homogeneity. Many-scale simulations, including micro-macro simultaneous finite element (FE) and discrete dislocation dynamics (DDD) simulations, were performed. Deformation mechanisms on the microscale are fundamental since they link those on the macro- and nanoscale. This work emphasizes micromechanical deformation behavior. Such FE calculations applied with crystal plasticity can predict local feature evolutions in detail, such as texture, morphology, and stress flow in individual grains. To avoid the negative influence of boundary conditions (BCs) on the result accuracy, BCs are given on the macrostructure, i.e., the microstructure is free of BCs. The particular type of 3D simulation, axisymmetry, is preferred, in which a 2D real microstructural cutout with 513 Ag grains is applied. From FE results, 3-twins strongly rotated to the loading direction (twins disappear), which, possibly, caused other grains to rotate away from the loading direction. The DDD simulation treats the dislocations as discrete lines and can predict the resolved shear stress (RSS) inside one grain with dependence on various features as dislocation density and lattice orientation. The RSS can act as the link between the FE and DDD predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call