Abstract

The conductance of ballistic graphene at the neutrality point is due to coherent electron tunneling between the leads, the so called pseudodiffusive regime. The conductance scales as a function of the sample dimensions in the same way as in a diffusive metal, despite the difference in the physical mechanisms involved. The electron-electron interaction modifies this regime, and plays a role similar to that of the environment in macroscopic quantum phenomena. We show that interactions can change substantially the transport properties. In the presence of nearby metallic layers, the conductance near the neutrality point can decrease with decreasing temperature, and reach values well below the quantum unit of conductance, as in an insulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.