Abstract

Many body effects contribute significantly to the energy states of electron–hole pairs confined in quantum wells in the presence of excess electrons. We present results of optically detected resonance spectroscopy of the internal transitions of photo-excited electron–hole pairs in the presence of excess electrons for GaAs QWs and CdTe QWs. Compared to the case of isolated negatively charged excitons, excess electrons produce a large blue shift of the internal transitions in modulation-doped GaAs quantum wells (QWs) for filling factor <2, and similar effects are found in CdTe QWs. For filling factor >2 no internal transitions are observed. These measurements demonstrate the strong effects of electron–electron correlations on the internal transitions of charged excitons in these quasi-2D systems and the importance of magnetic translation invariance. In the presence of excess electrons, the observed internal transitions are those of a magnetoplasmon bound to a mobile valence band hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.