Abstract
We describe the computational ingredients for an approach to treat interacting fermion systems in the presence of pairing fields, based on path-integrals in the space of Hartree-Fock-Bogoliubov (HFB) wave functions. The path-integrals can be evaluated by Monte Carlo, via random walks of HFB wave functions whose orbitals evolve stochastically. The approach combines the advantage of HFB theory in paired fermion systems and many-body quantum Monte Carlo (QMC) techniques. The properties of HFB states, written in the form of either product states or Thouless states, are discussed. The states are shown to be propagated by generalized one-body operators. The states can be stabilized for numerical iteration, and overlaps between two such states and one-body Green's functions can be computed. A constrained-path or phaseless approximation can be applied to the random walks of the HFB states if a sign problem or phase problem is present. The method is illustrated with an exact numerical projection in the Kitaev model, and in the Hubbard model with attractive interaction under an external pairing field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.