Abstract
Ceramic Injection Moulding (CIM) is an advanced powder processing technology launched three decades ago which has become a growing attractive alternative for new technical applications, such as thermal management and wireless charging. Porcelain-type ceramics can allow the introduction of new feedstocks into the CIM market at a competitive cost, in comparison with the conventional alumina and zirconia feedstocks. During the CIM manufacturing process, several factors related to the starting powder characteristics have an influence on the quality and properties of the final components, such as the mixing behaviour and the feedstock flow properties, as well as injection, debinding and sintering parameters. In this work, the viability of three porcelain-based powders to successfully achieve injectable mixtures for CIM is described. The mixing behaviour and the feedstocks flow behaviour as a function of its solids loading is evaluated. In this way, the ideal attributes for a CIM porcelain powder are discussed, studying the first process stages through to the production of a sintered component by injection moulding. Finally, density, hardness, bending strength and microstructural properties of the selected porcelain are investigated and a cost-efficient ceramic feedstock is suggested for aesthetic and electrical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have