Abstract

In this contribution, the development of a novel two-way 3D printed soft actuator actuated with shape memory alloys (SMAs) is presented, considering all the stages from the design, manufacturing, control, and implementation. The SMAs are integrated into the 3D printed composite using thermoplastic polyurethane (TPU). In order to measure the deflection of the soft actuator a computer vision system was implemented. With these measures and using system identification techniques, a mathematical model was developed, which describes the dynamics of the prototype and helps to design of a controller. However, precise control of deflection in systems actuated by SMAs is challenging due to their inherent nonlinearities and hysteretic behavior. To face this challenge, a proportional-integral (PI) controller was designed based on robust stability conditions. The effectiveness of the designed PI controller was validated through experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call