Abstract

Traditional particle board can generate harmful indoor air emissions due to the volatile resin-based compounds present. This study investigated the preparation of sawdust particle board using the novel ionic liquid based fusion approach with [EMIM]OAc. The dissolution parameters were investigated using the thermal optical microscopy technique. The particle board sheets were prepared by hot pressing sawdust in the presence of ionic liquid (IL) ([EMIM]OAc) and subsequently purifying the fusion sawdust matrix from the IL with methanol. The fusion process of the sawdust particles was analysed with SEM and mechanical testing. The raw materials and the produced materials were investigated with elemental analysis, FTIR, and 13C-SS-NMR. IL fusion of the sawdust required a temperature above 150 °C, similar to the glass transition temperature (tg) of lignin. At lower temperatures, strong particle fusion was not obtained. It was observed that the sawdust/IL weight ratio was an important parameter of the fusion process, and a 1:3 weight ratio resulted in the strongest particle boards with a tensile strength of up to 10 MPa, similar to commercial particle boards. The particle fusion process was also studied with a twin-screw extruder. The extrusion enhanced the fusion of the sawdust particles by increasing dissolution of the sawdust particles, which was subsequently seen in elevated tensile strength (20 MPa). The study provides a practical view of how sawdust-based particle board can be manufactured using ionic liquid-based fusion.

Highlights

  • The forest industry produces numerous side streams from the production of wood-based products

  • Thermal optical microscopy revealed that sufficiently high temperature (> 120 °C) is needed to start to dissolve the sawdust particles and to disrupt lignin bonding of the material

  • Sawdust–ionic liquid weight ratio is an important parameter, and it was observed that a 1:3 weight ratio gave the strongest sawdust boards

Read more

Summary

Introduction

The forest industry produces numerous side streams from the production of wood-based products. Wood lignin softens at temperatures above 65 °C (saturated with water) (Olsson and Salmén 1997) and reaches glass transition at above 140 °C (dry specimen) (Tejado et al 2007) Such behaviour can be used to manufacture sawdust briquettes by compression at high temperature (Grover and Mishra 1996). Many cellulose solvents, such as ionic liquids, NMMO, DMaC/LiCl, NaOH-Urea, are able to chemically weld lignocellulosic materials (Graenacher 1934; Johnson 1969; Atalla and Vanderhart 1984; Nishino and Arimoto 2007) This approach was earlier utilized to fuse paperboards and bleached wood plies (Tanaka et al 2018; Khakalo et al 2019, 2020).

Methods
Results and discussion
Conclusion
Compliance with ethical standards
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call