Abstract

ABSTRACTPorous ferroelectric materials have been evaluated for their piezoelectric energy harvesting capabilities. Macro-porous barium titanate (BaTiO3) ceramics were fabricated with a range of porosities using the burned out polymer spheres process. The pore fraction was tailored by mixing a pore forming agent with BaTiO3 powder in varying amounts by weight before cold-pressing and pressureless sintering. Introducing porosity into the ferroelectric significantly increased the energy harvesting figure of merit, with a maximum of 2.85pm2/N obtained at ∼40% relative density compared with ∼1.0 pm2/N for the dense material. The results demonstrate that introducing porosity into a piezoelectric potentially provides an effective route to improving the vibration energy harvesting capability of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.