Abstract
Selective laser melting is a promising additive manufacturing technology for manufacturing porous metallic bone scaffolds. Bone repair requires scaffolds that meet various mechanical and biological requirements. This paper addresses this challenge by comprehensively studying the performance of porous scaffolds. The main novelty is exploring scaffolds with different porosities, verifying various aspects of their performance and revealing the effect of their permeability on cell growth. This study evaluates the manufacturability, mechanical behaviour, permeability and biocompatibility of gyroid scaffolds. In simulations, mechanical behaviour and permeability exhibited up to 56% and 73% accuracy, respectively, compared to the experimental data. The compression and permeability experiments showed that the elastic modulus and the permeability of the scaffolds were both in the range of human bones. The morphological experiment showed that manufacturing accuracy increased with greater designed porosity, while the in vitro experiments revealed that permeability played the main role in cell proliferation. The significance of this work is improving the understanding of the effect of design parameters on the mechanical properties, permeability and cell growth of the scaffolds, which will enable the design of porous bone scaffolds with better bone-repair effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.