Abstract
BackgroundFor people who use manual wheelchairs, tips and falls can result in serious injuries including bone fractures, concussions, and traumatic brain injury. We aimed to characterize how wheelchair configuration changes (including on-the-fly adjustments), user variables, and usage conditions affected dynamic tip probability while rolling down a slope and contacting a small block.MethodsRigid body dynamic models of a manual wheelchair and test dummy were created using multi-body software (Madymo, TASS International, Livonia, MI), and validated with 189 experiments. Dynamic stability was assessed for a range of seat angles (0 to 20° below horizontal), backrest angles (0 to 20°), rear axle positions (0 to 20 cm from base of backrest), ground slopes (0 to 15°), bump heights (0 to 4 cm), wheelchair speeds (0 to 20 km/hr), user masses (50 to 115 kg), and user positions (0 to 10 cm from base of backrest). The tip classifications (forward tip, backward tip, rolled over bump, or stopped by bump) were investigated using a nominal logistic regression analysis.ResultsFaster wheelchair speeds significantly increased the probability of tipping either forward or backward rather than stopping, but also increased the probability of rolling over the bump (p < 0.001). When the rear axle was positioned forward, this increased the risk of a backward tip compared to all other outcomes (p < 0.001), but also reduced the probability of being stopped by the bump (p < 0.001 compared to forward tip, p < 0.02 compared to rolling over). Reclining the backrest reduced the probability of a forward tip compared to all other outcomes (p < 0.001), and lowering the seat increased the probability of either rolling over the bump or tipping backwards rather than tipping forward (p < 0.001). In general, the wheelchair rolled over bumps < 1.5 cm, and forwards tipping was avoided by reducing the speed to 1 km/hr.ConclusionsThe probability of forward tipping, corresponding to the greatest risk of injury, was significantly reduced for decreased speeds, smaller bumps, a reclined backrest, and a lower rear seat height. For wheelchairs with dynamic seating adjustability, when travelling downhill, on-the-fly adjustments to the seat or backrest can increase the likelihood of safely rolling over a bump.
Highlights
For people who use manual wheelchairs, tips and falls can result in serious injuries including bone fractures, concussions, and traumatic brain injury
Our aim was to determine how fixed and spontaneous changes to a manual wheelchair configuration can affect the dynamic stability of the wheelchair rolling down a slope with a small bump at the end; a wheelchair skill that poses well-known safety concerns [13, 14]
The purpose of this study was to determine the effects of on-the-fly wheelchair configuration adjustments, fixed wheelchair configuration changes, user variables, and usage conditions, on the dynamic tip probability of a wheelchair when moving down a slope
Summary
For people who use manual wheelchairs, tips and falls can result in serious injuries including bone fractures, concussions, and traumatic brain injury. We aimed to characterize how wheelchair configuration changes (including on-the-fly adjustments), user variables, and usage conditions affected dynamic tip probability while rolling down a slope and contacting a small block. 3.3% of people who use wheelchairs in the United States are involved in serious accidents [3], sometimes resulting in traumatic brain injury, bone fractures, and concussions [4]. The risk of a wheelchair tipping is related to its stability. Manual wheelchair static stability is defined by ISO 7176-1: 2014 as the angle at which a wheelchair and user tip over at rest [6]. There are currently no standards for determining manual wheelchair dynamic stability, that is, the risk of tipping while moving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.