Abstract

Manual wheelchair propulsion is an important form of mobility for people with lower limb disabilities. Changes in the wheelchair configuration can affect, range of motion (ROM) of the upper limb joints, muscle actions and system stability. The purpose of this study is to investigate the impact of adjusting wheelchair configurations on upper body joints kinematics and muscle recruitment for able-bodied non experienced manual wheelchair users through applying a marker-based 3D motion analysis technique. Ten healthy male subjects were characterised for three wheelchair configurations, set by adjusting the horizontal axle position of both rear wheels by (3 cm) and (6 cm) posteriorly from the original position set by the manufacturer. Selected 3D kinematic and surface electromyography (sEMG) parameters of the upper body joints and shoulder muscles were measured in the Cardiff University Motion Analysis Laboratory. During the propulsion trials, trunk flexion/extension, lateral bending and axial rotation were evaluated within the average range of (7.50°±1.4°), (5.91°±1.23°) and (7.01°±3.91°), respectively. Dominant shoulder abduction/adduction, flexion/extension and internal/external rotation were evaluated within the average range of (24.63°±6.38°), (17.31°±4.27°) and (40.02°±12.35°), respectively. Dominant elbow pronation/supination and flexion/extension were evaluated within the range of (15.49°±7.70°) and (34.37°±8.38°), respectively. Dominant wrist radial/ulnar deviation and flexion/ extension were evaluated within the average range of (29.82°±8.97°) and (53.59°±9.65°), respectively. With normalising the muscle EMG to the percentage of MVC activity, posterior deltoid had the highest average EMG muscle activity (11.43 ± 5.33) during the propulsion trials and at the three wheel adjustments relative to the other dominant shoulder muscles. Other average muscles activities were evaluated as (6.99 ± 2.37) for upper trapezius, (6.89 ± 2.51) for triceps brachii, (5.39 ± 2.95) for anterior deltoid, (3.26 ± 1.00) for biceps brachii and (3.14 ± 1.26) for pectoralis major as the lowest average activity. The findings of this study indicate that changing rear wheel axle position posteriorly is correlated with increasing the kinematic ROMs of the trunk and dominant upper limb and the sEMG activities of the muscles predominantly involved with the recovery phase of propulsion which could be linked with higher risks of musculoskeletal disorders. This knowledge may help professionals when designing and prescribing wheelchairs that are more proper to users’ functional characteristics, accordingly profiting them improved quality of life.

Highlights

  • Manual wheelchair propulsion is an important form of mobility for people with lower limb disabilities to maintain their independence in activities of daily living and to become productive members of their communities (WHO, 2011)

  • In an effort to gain a better understanding of the relationship between manual wheelchair propulsion and shoulder pain and injury, researchers and clinicians have conducted biomechanical analyses of wheelchair propulsion leading to identification of modifiable risk factors, which would hopefully aid in the development of prevention and treatment interventions (Odle 2014)

  • This study aims to investigate the impact of adjusting wheelchair key configurations on upper limb joints kinematics and muscles recruitment during manual wheelchair propulsion

Read more

Summary

Introduction

Manual wheelchair propulsion is an important form of mobility for people with lower limb disabilities to maintain their independence in activities of daily living and to become productive members of their communities (WHO, 2011). People who use a manual wheelchair depend upon their upper limbs for mobility during their activities of daily living. Upper limbs of wheelchair users are subject to unnatural loading conditions and repetitive use. As a result of greater than normal usage of the upper limbs, shoulder pain and pathology is common among manual wheelchair users (Boninger et al 2002). Wheelchair propulsion is basically described as two phases of hand and arm movement: the push phase and the recovery phase. The individual’s hands are in contact with the push rim of the wheelchair and there is special application of force to the rim

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.