Abstract

We constrain mantle wedge seismic structure in the Southern Tyrrhenian Subduction Zone (Italy) using teleseismic receiver functions (RF) recorded at station CUC of the Mednet seismographic network. Station CUC lies above the northern portion of the Calabrian slab segment, which is recognized from deep seismicity and tomographic imaging as a narrow, laterally high-arched slab fragment, extending from the surface below Calabria down to the transition zone. To better define the descending slab interface and possible shear-coupled flow in the mantle wedge above the slab, we computed receiver functions from the P-coda of 147 teleseismic events to analyze the back-azimuth dependence of Ps converted phases from interfaces beneath CUC. We stack the RF data-set with back azimuth to compute its harmonic expansion, which relates to the effects of interface dip and anisotropy at layer boundaries. The seismic structure constrained through the RF analysis is characterized in its upper part by a sub-horizontal Moho at about 25 km depth, overlying a thin isotropic layer at top of mantle. For the deeper part, back-azimuth variation suggests two alternative models, each with an anisotropic layer between two dipping interfaces near 70- and 90-km depth, with fast- and slow-symmetry axes, respectively, above the Apennines slab. Although independent evidence suggests a north-south strike for the slab beneath CUC, the trend of the inferred anisotropy is 45° clockwise from north, inconsistent with a simple downdip shear-coupled flow model in the supra-slab mantle wedge. However complexities of flow and induced rock fabric in the Tyrrhenian back arc may arise due to several concurring factors such as the arcuate shape of the Apennines slab, its retreating kinematics, or slab edge effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call