Abstract
We processed more than 3000 inter-station great circle paths to determine the phase velocity for the fundamental mode of Rayleigh wave, and finally arrived at 110 paths of high quality dispersion data, which show good spatial coverage in western China and neighboring regions. Rayleigh wave phase velocity dispersion model WChina1D was obtained and compared with previous global and regional models. Phase velocity maps from 15 to 120 s were inverted and the maps of 20, 40, 80, and 120 s are presented in this paper. Checkerboard tests show the average lateral resolution in our area of interest is about 7°. Our tomographic results corroborate a prominent low-velocity anomaly lying mainly in the lower crust and uppermost mantle in the Chang Thang terrane. The apparent low-velocity anomaly also appears in the wide area of northeastern Tibet in the crust and upper mantle. The low-velocity area around southeastern Tibet may be created by the southeastern migration of the low-velocity mass of the Tibetan plateau. The eastern Tarim shows structure with higher velocities relative to that of central Tarim. A large-scale low-velocity anomaly is clearly seen in central and western Mongolia. Our high quality measurements were also used to evaluate the CUB global shear velocity model [Shapiro, N., Ritzwoller, M., 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151, 88–105] of the crust and upper mantle. The 40 s Rayleigh phase velocity map predicted from CUB model shows an apparent discrepancy with our measurements in western China and western Mongolia, which implies a higher estimated (about +1–2%) phase velocity model in these regions, probably due to the Gaussian smoothing condition in their tomography inversion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have