Abstract

Fungi of the Monascus species are used in Asia for the production of fermented foods, mainly due to the ability of these fungi to produce secondary metabolites such as pigments. Due to the growing discussion about the use of synthetic dyes and the fact that their ingestion is associated with harm to human health, studies have sought to replace these dyes using natural pigments, and new alternatives for the production of these natural pigments have been presented. In this context, Monascus pigments are a viable alternative for application in the food industry. This study aimed to evaluate different main carbon sources and pH conditions in the red pigment production of Monascus sp. We found that mannitol, when used as the only carbon source, stimulated the production of extracellular red pigment, reaching a concentration of 8.36 AU in 48 h, while glucose and sucrose reached concentrations of 1.08 and 1.34 AU, respectively. Cultivation in a bioreactor using mannitol showed great potential for optimizing pigment production and obtaining a high concentration of extracellular pigment in a short time, reaching a concentration of 25 AU in 60 h of cultivation. The change in pH altered the production of extracellular red pigment in a culture medium containing mannitol as a carbon source, demonstrating less potential than the use of static pH during cultivation in a bioreactor. Mannitol proved to be an efficient carbon source for M. pupureus under static pH conditions for both flask and benchtop bioreactor cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call