Abstract

The role of the electric field during manipulations with diamond nanoparticles on a silicon substrate by a scanning probe microscope (SPM) tip is studied. It is found that the attractive force appearing in the contact between nanodiamond and an electrically charged tip is sufficient to detach and displace a chosen nanoparticle from initial to goal position under moderate mechanical stresses of the probe to nanoparticle. The problem of the control of the tip motion trajectory during manipulations is solved by visualizing the tip trace of the sample surface. The results obtained will be used for precision positioning of single-photon emitters based on luminescent nanodiamonds in microcavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.