Abstract

10 micrometer-scale scanning probe microscopy (SPM) local oxidation lithography was performed on Si. In order to realize large-scale oxidation, an SPM tip with a contact length of 15 microm was prepared by focused-ion-beam (FIB) etching. The oxidation was carried out in contact mode operation with the contact force ranging from 0.1 to 2.1 microN. The applied bias voltage was 50 V, and scanning speed was varied from 10 to 200 microm/s. The scan length was 15 microm for one cycle. The influence of contact force on the large-scale oxidation was investigated. At high contact force, the Si oxide with good size uniformity was obtained even with high scanning speed. The SPM tip with larger contact length may increase the spatial dimensions of the water meniscus between the SPM tip and sample surface, resulting in the larger dimensions of the fabricated oxide. Furthermore, the throughput of large-scale oxidation reached about 10(3) microm2/s by controlling the scanning speed and contact force of the SPM tip. It is suggested that SPM local oxidation can be upscaled by using a SPM tip with large contact length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.