Abstract

Here, we present the manipulation of the crystal structure defects: an alternative route to reduce the lattice thermal conductivity (κL) on an atomic scale and improve the thermoelectric performance of CuGaTe2. This semiconductor with defects, represented by anion position displacement (u) and tetragonal deformation (η), generally gives low κL values when u and η distinctly deviate from 0.25 and 1 in the ideal zinc-blende structure, respectively. However, this semiconductor will show high Seebeck coefficients and low electrical conductivities when u and η are close to 0.25 and 1, respectively, due to the electrical inactivity caused by an attractive interaction between donor-acceptor defect pairs (GaCu2+ + 2VCu−).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.