Abstract

Hierarchical chiral structures have broad applications in optical devices, asymmetric catalysis, and biological systems. The delicate balance of various interactions are key to the self-assembly of chiral structures. Herein, a ternary co-assembly consisting of cationic pillar[5]arenes (P5As), anionic β-glucopyranoside (βGlcD/βGlcL), and Anderson-type polyoxometalates (POMs) were constructed. Through adjusting the stoichiometry of βGlcD, the assemblies were effectively controlled to form hierarchical nano-leaf assemblies with twisted nanoribbons in a homochiral direction. The co-assemblies exhibit strong Cotton effects, and successfully induced the chirality of Anderson-type POMs. More interestingly, by changing the central metal in Anderson-type POMs (XMo6 O24 3- (X=Cr, Al, and Ga)), even though the three clusters have the same numbers of charge and size, the hierarchical chirality of the related assemblies varied in the morphology of the assemblies and the Cotton effect in the CD spectra. Results in theoretical calculations and ITC titration indicates that the tiny difference in long-range electrostatic interaction would result in the anion recognition of POMs, modulated by βGlcD through host-guest inclusion and hydrogen bonding in the assembly process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call