Abstract

The Faraday rotation in Bi-substituted yttrium-iron garnet thin films, in which an artificially fabricated Au nanoparticle array is embedded, is studied as a function of lattice spacing compared with the extinction spectra. With decreasing lattice spacing in the Au array, the wavelengths corresponding to the enhanced Faraday rotation and the extinction peak showed blueshifts in the same manner. This indicates that Faraday rotation can be manipulated by means of the wavelength shift of localized surface plasmon resonance that originates from the change in electromagnetic interaction between Au nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call