Abstract

Recent computational models of sign tracking (ST) and goal tracking (GT) have accounted for observations that dopamine (DA) is not necessary for all forms of learning and have provided a set of predictions to further their validity. Among these, a central prediction is that manipulating the intertrial interval (ITI) during autoshaping should change the relative ST-GT proportion as well as DA phasic responses. Here, we tested these predictions and found that lengthening the ITI increased ST, i.e., behavioral engagement with conditioned stimuli (CS) and cue-induced phasic DA release. Importantly, DA release was also present at the time of reward delivery, even after learning, and DA release was correlated with time spent in the food cup during the ITI. During conditioning with shorter ITIs, GT was prominent (i.e., engagement with food cup), and DA release responded to the CS while being absent at the time of reward delivery after learning. Hence, shorter ITIs restored the classical DA reward prediction error (RPE) pattern. These results validate the computational hypotheses, opening new perspectives on the understanding of individual differences in Pavlovian conditioning and DA signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.