Abstract

We investigate theoretically the optical bistability from a Fabry-Perot cavity with graphene in the terahertz (THz) frequency. It is demonstrated that the optical bistablility in this cavity can be realized due to the electric field enhancement and the giant third-order nonlinear conductivity of graphene. The optical bistable behavior is strongly dependent on the transmission amplitude of the mirror and the position of the graphene in the cavity. It is especially important that the hysterical behaviors of the transmitted light rely on the optical conductivity of graphene, making the Fabry-Perot cavity to be a good candidate for dynamic tunable optical bistable device in the THz frequencies, owing to the possibility of high tunability of graphene conductivity by means of external electrostatic or magnetostatic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.