Abstract
Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.