Abstract
In this work, the strain engineering on the electronic and spintronic properties of PtS2/MoTe2 heterostructure is investigated by first-principle calculations. Based on the energy minimum principle, the most stable configuration of the PtS2/MoTe2 heterostructure is recognized. The mechanisms for the evolution of the band structures under different strains are analyzed by the atomic orbital projected band structures. Furthermore, a Rashba type spin texture of PtS2/MoTe2 heterostructure is predicted, with a formation mechanism revealed through atomic orbital projected spin textures. The strain tunable electronic and spintronic properties of PtS2/MoTe2 heterostructure hold great promise in applications of spintronics and nanoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.