Abstract

The native extracellular matrix is highly dynamic with continuous mutual feedback between cells being responsible for many important cell function regulators. However, establishing bidirectional interaction between complex adaptive microenvironments and cells remains elusive. Herein an adaptive biomaterial based on lysozyme monolayers self-assembled at a perfluorocarbon FC40-water interface is reported. The dynamic adaptivity of interfacially assembled protein nanosheets is modulated independently of bulk mechanical properties by covalent crosslinking. This provides a scenario to establish bidirectional interactions of cells with liquid interfaces of varying dynamic adaptivity. This is found that growth and multipotency of human mesenchymal stromal cells (hMSCs) are enhanced at the highly adaptive fluid interface. The multipotency retention of hMSCs is mediated by low cell contractility and metabolomic activity involving the continuous mutual feedback between the cells and materials. Consequently, an understanding of the cells' response to dynamic adaptivity has substantial implications for regenerative medicine and tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.