Abstract

Novel time- and energy-efficient synthesis methods, especially those adaptable to large-scale industrial processing, are of vital importance for broader applications of thermoelectrics. We herein reported a case study of layer-structured oxychalcogenides Bi1–xPbxCuSeO (x = 0–10%) with emphases on the reaction mechanism of self-propagating high-temperature synthesis (SHS) and the impact of SHS conditions on the thermoelectric properties. The combined results of X-ray powder diffraction, differential scanning calorimetry, and quenching experiments corroborated that the SHS process of BiCuSeO consisted two fast binary SHS reactions (2 Bi+3 Se → Bi2Se3 and 2 Cu+Se → Cu2Se) intimately coupled with two relatively slow solid-state diffusion reactions (2 Bi2Se3+B2O3 → 3 Bi2SeO2 and then Bi2SeO2+Cu2Se → 2 BiCuSeO). The formation rate of the reaction intermediate Bi2SeO2 was the bottleneck in the SHS process of BiCuSeO. Importantly, we found that adding PbO in the starting materials has (i) facilitated the formatio...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call