Abstract

The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism, namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call