Abstract

Double-sided incremental forming (DSIF) is a die-less sheet metal forming process capable of fabricating complex parts. The flexibility of DSIF can be used for in-situ mechanical properties alteration, e.g., by controlling deformation-induced martensite transformation of austenitic stainless steels. In this paper, SS304L is deformed using DSIF at three different cooling conditions and two different tool paths to affect the martensite transformation. Additionally, finite element analyses were used to understand the effect of tool paths on springback and plastic strain. Implementing a reforming tool path at the lowest achievable temperature resulted in a martensite volume fraction as high as 95%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.