Abstract

Double Sided Incremental Forming (DSIF) is gaining importance over Single Point Incremental Forming (SPIF) due to its ability to form complex geometries and the capability to obtain better accuracies. In the present work, residual stresses are measured in pyramidal components formed using SPIF, DSIF using X-ray diffraction technique. Residual stress development mechanism during SPIF and DSIF is studied using Finite Element Analysis (FEA). Stress development along circumferential and meridional directions are explained using bending and unbending of sheet material taking place around forming tool. It is observed that the residual stresses are compressive on the outer surface and tensile on the inner surface of sheet in both circumferential and meridional directions. In DSIF, supporting tool restricts the unbending of sheet causing the residual stresses to be less compressive on the outer surface and less tensile on the inner surface compared to SPIF. It is also observed that with an increase in tool diameter, spring back increased, hence, meridional residual stress on the outer surface became more compressive and circumferential residual stress on the inner surface became more tensile. Residual stresses in ISF are compared with FEA predictions of conventional stamping process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call