Abstract

Coupling between physical modes can trigger some new physical phenomena such as frequency shift, new mode, and Rabi splitting. Resonant modes in graphene-based metamaterials provide a new platform for the research of coupling. In this work, we demonstrate that the plasmonic coupling of split ring resonator (SRR) dimer in graphene-based metamaterials can be easily manipulated. This magnetoinductive coupling can switch on/off the dark modes easily, which is usually done by symmetry-breaking structure previously. Furthermore, the dark mode can also be activated by Fermi energy as well as carrier concentration changing with either physical or chemical methods conveniently. In addition, different graphene-based SRR dimer configurations present different coupling strengths, which benefits the designing and optimizing of graphene-based metamaterials. The demonstration could enhance the versatility of both coupling studies in terahertz (THz) region and graphene-based metamaterials for THz devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call