Abstract

We proposed a model for manipulating giant cross-Kerr nonlinearity in an atomic gaseous medium consisting of six-level inverted-Y systems. The absorption, dispersion, and cross-Kerr nonlinear coefficients of the medium are derived as analytical functions of the parameters of probe, coupling, and signal fields. It is shown that the cross-Kerr nonlinearity is enhanced significantly in three transparent windows under electromagnetically induced transparency (EIT). Furthermore, the cross-Kerr nonlinearity can be manipulated between positive and negative values by controlling intensity and/or frequency of the coupling laser. Such controllable giant cross-Kerr nonlinearity with the analytical interpretation is convenient to find experimental parameters and is useful for studying applications of controllable multi-channel quantum phase gates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.