Abstract

In this work, we study the influence of Doppler broadening on cross-Kerr nonlinearity in a four-level inverted-Y atomic system under electromagnetically induced transparency (EIT) condition. The first- and third-susceptibilities in the presence of Doppler effect are derived as a function of probe, signal and coupling beams and temperature of medium. Under EIT condition, cross-Kerr nonlinearity is enhanced several orders of magnitude compared to that without EIT. The Doppler effect leads to a reduction in the transparent efficiency and thus reduces the amplitude of cross-Kerr nonlinear coefficient. For hot atomic gaseous medium, such consideration of the Doppler effect may be useful for experimental observations and apply to photonic devices operating at different temperature conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.