Abstract

Precise manipulation of chromatin folding is important for understanding the relationship between the three-dimensional genome and nuclear function. Existing tools can reversibly establish individual chromatin loops but fail to manipulate two or more chromatin loops. Here, we engineer a powerful CRISPR system which can manipulate multiple chromatin contacts using bioorthogonal reactions, termed the bioorthogonal reaction-mediated programmable chromatin loop (BPCL) system. The multiinput BPCL system employs engineered single-guide RNAs recognized by discrete bioorthogonal adaptors to independently and dynamically control different chromatin loops formation without cross-talk in the same cell or to establish hubs of multiway chromatin contacts. We use the BPCL system to successfully juxtapose the pluripotency gene promoters to enhancers and activate their endogenous expression. BPCL enables us to independently engineer multiway chromatin contacts without cross-talk, which provides a way to precisely dissect the high complexity and dynamic nature of chromatin folding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call