Abstract

We consider the problem of maximizing the $\ell_1$ norm of a linear map over the sphere, which arises in various machine learning applications such as orthogonal dictionary learning (ODL) and robust subspace recovery (RSR). The problem is numerically challenging due to its nonsmooth objective and nonconvex constraint, and its algorithmic aspects have not been well explored. In this paper, we show how the manifold structure of the sphere can be exploited to design fast algorithms for tackling this problem. Specifically, our contribution is threefold. First, we present a manifold proximal point algorithm (ManPPA) for the problem and show that it converges at a sublinear rate. Furthermore, we show that ManPPA can achieve a quadratic convergence rate when applied to the ODL and RSR problems. Second, we propose a stochastic variant of ManPPA called StManPPA, which is well suited for large-scale computation, and establish its sublinear convergence rate. Both ManPPA and StManPPA have provably faster convergence rates than existing subgradient-type methods. Third, using ManPPA as a building block, we propose a new approach to solving a matrix analog of the problem, in which the sphere is replaced by the Stiefel manifold. The results from our extensive numerical experiments on the ODL and RSR problems demonstrate the efficiency and efficacy of our proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call