Abstract
Linear cosmological perturbation theory is pivotal to a theoretical understanding of current cosmological experimental data provided e.g. by cosmic microwave anisotropy probes. A key issue in that theory is to extract the gauge-invariant degrees of freedom which allow unambiguous comparison between theory and experiment. When one goes beyond first (linear) order, the task of writing the Einstein equations expanded to nth order in terms of quantities that are gauge-invariant up to terms of higher orders becomes highly non-trivial and cumbersome. This fact has prevented progress for instance on the issue of the stability of linear perturbation theory and is a subject of current debate in the literature. In this series of papers we circumvent these difficulties by passing to a manifestly gauge-invariant framework. In other words, we only perturb gauge-invariant, i.e. measurable quantities, rather than gauge variant ones. Thus, gauge invariance is preserved non-perturbatively while we construct the perturbation theory for the equations of motion for the gauge-invariant observables to all orders. In this first paper we develop the general framework which is based on a seminal paper due to Brown and Kuchař as well as the relational formalism due to Rovelli. In the second, companion, paper we apply our general theory to FRW cosmologies and derive the deviations from the standard treatment in linear order. As it turns out, these deviations are negligible in the late universe, thus our theory is in agreement with the standard treatment. However, the real strength of our formalism is that it admits a straightforward and unambiguous, gauge-invariant generalization to higher orders. This will also allow us to settle the stability issue in a future publication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.