Abstract

Characteristics of the Arctic Oscillation and El Nino-Southern Oscillation effects manifested on interannual scales in the equatorial stratosphere are determined. Wavelet analysis of local phase shifts, coherence, and correlation is used to obtain correlation portraits of the largest factors of climate variability against the background of coherent variations in the equatorial stratospheric wind speed at the 50- and 15-hPa pressure levels. It is shown that the Arctic Oscillation and El Nino-Southern Oscillation signals may reach the tropical stratosphere. The signals are easily identified in a wide range of scales, including quasi-biennial, 3-to 5-year, and 10-to 11-year periods. The results obtained reflect a coherent pattern of the manifestation of these signals at the selected stratospheric levels. It is found that the El Nino-Southern Oscillation effect at periods close to 10–11 years reaches the stratospheric level rather rapidly, in the same or next month, while the effects of the Arctic Oscillation index are delayed by nine months. The estimates obtained show that a phase shift of almost 180° in the Arctic Oscillation index relative to the equatorial stratospheric wind occurred in almost all of the range of interannual periods in 1978 and 1992. For the El Nino-Southern Oscillation, an increase in local correlations on a scale of 3-to 5-year variations was observed in 1980–1990, a 180° phase shift occurred in 1992, and the correlation with stratospheric wind increased in 1992–2004. The estimates obtained are indicative of a change in the atmospheric circulation pattern that took place in the Northern Hemisphere in 1978–1991.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call