Abstract

Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.

Highlights

  • Coastal habitats play an important role as nurseries in the early life history of many marine fish species

  • Our global analysis of potential nursery habitat use suggests that mangroves are the preferred juvenile habitat for many nursery species in the Caribbean, whereas seagrass beds seem to fulfill this role in the Indo-Pacific

  • Tidal regime appears to act as an important driver of these patterns of fish distributions and degree of habitat connectivity, with the relative usage of mangroves decreasing with increasing tidal amplitude

Read more

Summary

Introduction

Coastal habitats play an important role as nurseries in the early life history of many marine fish species. Juvenile and adult habitats of various marine fish species are spatially separated, and habitats where juveniles spend most of their life are often referred to as nursery habitats [1, 2]. The general consensus is that a particular habitat can be referred as a nursery habitat if it contributes a higher than average biomass to a spatially separated adult population compared to all other juvenile habitats. This can be realized through enhanced fish density, growth, survival, or movement to adult habitats of juveniles in nursery habitats compared to other nearby habitats [2]. Juveniles of many fish species do not, settle directly in adult habitats after having completed their pelagic larval phase, but instead undertake ontogenetic habitat shifts during which they move across a variety of shallow-water habitats [3, 6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call