Abstract

Parkinson's disease (PD) is a neurodegenerative disorder with a lack of effective treatment options. mangiferin, a bioactive compound derived from mango, has been shown to possess strong neuroprotective properties. In this study, we investigated the neuroprotective effects of mangiferin on PD and its underlying mechanisms using both in vitro and in vivo models of 6-OHDA-induced PD. Additionally, we conducted molecular docking experiments to evaluate the interaction between mangiferin and AKR1C3 and β-catenin. Our results demonstrated that treatment with mangiferin significantly attenuated 6-OHDA-induced cell damage in PC12 cells, reducing intracellular oxidative stress, improving mitochondrial membrane potential, and restoring the expression of tyrosine hydroxylase (TH), a characteristic protein of dopaminergic neurons. Furthermore, mangiferin reduced the accumulation of α-synuclein and inhibited the expression of AKR1C3, thereby activating the Wnt/β-catenin signaling pathway. In vivo studies revealed that mangiferin improved motor dysfunction in 6-OHDA-induced PD mice. Molecular docking analysis confirmed the interaction between mangiferin and AKR1C3 and β-catenin. These findings indicate that mangiferin exerts significant neuroprotective effects in 6-OHDA-induced PD by inhibiting AKR1C3 and activating the Wnt/β-catenin signaling pathway. Therefore, mangiferin may emerge as an innovative therapeutic strategy in the comprehensive treatment regimen of PD patients, providing them with better clinical outcomes and quality of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call