Abstract

Our in vitro experiments suggested that tetrahydroxystilbene glucoside (TSG) affords a significant neuroprotective effect against MPP+-induced damage and apoptosis in PC12 cells though activation of the PI3K/Akt pathway. This study was aimed to investigate the potential neuroprotective effect of TSG in 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-treated mouse model of Parkinson's disease (PD). We found that treatment of TSG protected dopaminergic neurons by preventing MPTP-induced decreases in substantia nigra tyrosine hydroxylase (TH)-positive cells and striatal dopaminergic transporter (DAT) protein levels. Furthermore, it was also associated with increasing striatal Akt and GSK3β phosphorylation, up-regulation of the Bcl-2/BAD ratio, and inhibition of the activation of caspase-9 and caspase-3. These results showed that TSG promoted dopamine neuron survival in vivo, the PI3K/Akt signaling pathway may have mediated the protection of TSG against MPTP, suggesting that TSG treatment might represent a neuroprotective treatment for PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.