Abstract

Sulfate reduction is considered the primary pathway for organic carbon remineralization on the northern Gulf of Mexico Louisiana continental shelf (LCS) where bottom waters are seasonally hypoxic, yet limited information is available on the importance of iron and manganese cycling in the region. Sedimentary manganese, iron, and sulfur cycling were investigated on the LCS using a combined chemical analysis and sediment diagenesis modeling approach. Three stations situated 320km across the LCS along the 20m isobath were sampled up to five times between the spring of 2006 and summer of 2007. Bottom water oxygen levels at the stations ranged from 203mmolm−3 in spring to 2.5mmolm−3 in summer. Porewater Mn and Fe2+ concentrations (up to 275 and 300μmolL−1, respectively), sulfate reduction rates (1.0–8.4mmolm−2d−1), and the fraction of total oxalate extracted iron obtained as Fe(II) (0.25–0.52) differed between station and season. Sediments at station Z02 on the eastern LCS, south of Terrebonne Bay, had higher organic matter content and sulfate reduction rates than sediments at Z03, 160km further west. Sulfate reduction rates were higher in summer than spring at station Z02 but not at Z03 where porewater Mn and Fe concentrations were highest in summer. Porewater Fe2+ concentrations, solid phase oxalate-extractable Fe concentrations, and sediment incubation experiments suggested iron reduction at Z03 may account for 20% or more of organic carbon remineralization. LCS Fe(III) concentrations decreased and sulfate reduction rates increased in model simulations by lowering interfacial dissolved oxygen levels and increasing the rates of organic matter deposited on the sediment surface. Results from this study demonstrate that LCS sedimentary metal oxide cycling may be more important in organic carbon mineralization pathways than previously recognized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.