Abstract
This work introduces a novel Mn(I)-catalyzed enantioselective alkylation methodology that efficiently produces a wide array of P-chiral phosphines with outstanding yields and enantioselectivities. Notably, the exceptional reactivity of Mn(I) complexes in these reactions is demonstrated by their effective catalysis with both typically reactive alkyl iodides and bromides, as well as with less reactive alkyl chlorides. This approach broadens the accessibility to various P-chiral phosphines and simplifies the synthesis of chiral tridentate pincer phosphines to a concise 1-2 step process, contrary to conventional, labor-intensive multistep procedures. Importantly, the development significantly expands the applicability of earth-abundant Mn(I)-based complexes beyond their recently established roles in catalytic hydrogenative and conjugate addition reactions, emphasizing the catalytic potential of Mn(I) complexes as a viable alternative to noble metal chemistry and, in some cases, even surpassing their performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have