Abstract

Maize (Zea mays L. var. Everta) is an economically significant crop cultivated worldwide. Unfortunately, microbial diseases, especially, mycopathogens such as Fusarium species, militate against the production of maize. Protective microbial species and bioactive plant extracts have been studied in the control of plant pathogens. However, there is a dearth of information on their comparative efficacy and effect on wilt disease of maize caused by Fusarium solani, as investigated in this study. Using the ITS and 16s rDNA primers for fungal pathogen and bacterial strains, respectively, the mycopathogen was confirmed as Fusarium solani FCI20, while biocontrol Bacillus strains were identified as Bacillus velezensis EBs02 and Bacillus thuringiensis EBs04. Fusarium solani FCI20 successfully infected maize seedlings through rhizosphere inoculation, and caused severe leaf chlorosis, necrosis and wilt in maize seedlings. Bacillus thuringiensis EBs04 expressed the highest in vitro mycelial inhibition (85.20%), followed by Gmelina arborea (78.58%), while Milicia excelsa appeared to express the lowest mycelial inhibition potential (49.95%). Bacillus velezensis EBs02 expressed the highest in vivo disease severity reduction in maize seedlings (with percentage disease control of 84.16), while B. thuringiensis-treated plants had the lowest incidence of wilt disease (4.32%). However, contrary to their in vitro mycelial inhibition potential, B. velezensis EBs02, Gmelina arborea, Milicia excelsa and Cola nitida expressed radically different levels of in vivo wilt disease control in maize seedlings. Consequent upon the biocontrol patterns observed in this study, in vivo assay should be considered in the preliminary selection of promising biocontrol agents against phytopathogens, such as Fusarium species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call