Abstract

The Cancer Registry of Norway organises a population-based breast cancer screening program, where 250 000 women participate each year. The interpretation of the screening mammograms is a manual process, but deep neural networks are showing potential in mammographic screening. Most methods focus on methods trained from pixel-level annotations, but these require expertise and are time-consuming to produce. Through the screenings, image level annotations are however readily available. In this work we present a few models trained from image level annotations from the Norwegian dataset: a holistic model, an attention model and an ensemble model. We compared their performance with that of pretrained models based on pixel-level annotations, trained on international datasets. From this we found that models trained on our local data with image-level annotation gave considerably better performance than the pretrained models from external data, although based on pixel-level annotations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.