Abstract

Simple SummaryA relationship exists between a female’s early nutritional environment and her ability to produce milk when she lactates as an adult. Colostrum is the first milk available to neonates after birth. We hypothesized that differing levels of colostrum stimulate differences in very early mammary development. Despite differences in weight at 24 h and 7 days, mammary morphological development and DNA content was not found to be different between gilts fed a high versus low dose of colostrum. The rate of mammary gland protein and DNA synthesis over the first week was not different between the groups. Circulating levels of amino acids were determined after 24 h of colostrum feeding, and levels of circulating lysine were found to be related to average daily gain and mammary DNA synthetic rate. Moreover, the level of lysine was related to a lower ratio of DNA to protein synthesis, suggesting that higher lysine favored cell division versus differentiation (by leaving the cell cycle). Further studies are needed in this area.Perinatal nutrition affects future milk production. The number of mammary epithelial cells affect milk production capacity. Therefore, it was hypothesized that the level of colostrum intake affects the proliferation rate and the total number of mammary epithelial cells in the gland. The ratio of newly synthesized protein to newly synthesized DNA reflects the relative amount of cellular differentiation to cell division. The study objective was to determine the relationship between the level of colostrum intake and 24 h-level of circulating amino acid, glucose and insulin with mammary parenchyma histological features, cell division and protein synthesis over the first week postnatal. One of two standardized doses of a homogenate colostrum sample, 10% (n = 8) and 20% (n = 8) of birth bodyweight, was fed to gilts over the first 24 h postnatal. Gilts were administered deuterium oxide immediately after birth and daily to label newly synthesized DNA and proteins. Gilts were euthanized on postnatal day seven, and DNA and protein were isolated from mammary parenchyma. DNA and protein fractional synthesis (f) and fractional synthetic rate (FSR) were calculated using mass isotopomer distribution analysis. The ratio of protein f and FSR to DNA f and FSR were calculated and used to indicate the relative amounts of differentiation to cell division. Mammary morphological development was also analyzed by measuring the parenchymal epithelial area and the stromal and epithelial proliferation index on postnatal day seven. Colostrum dose was not related to any of the variables used to evaluate mammary development. However, plasma lysine levels at 24 h postnatal were positively related to average daily gain (ADG; r = 0.54, p = 0.05), DNA f (r = 0.57; p = 0.03) and DNA FSR (r = 0.57; p = 0.03) in mammary parenchyma. Plasma lysine was inversely related to the ratio of protein to DNA f and FSR (r = −0.56; p = 0.04). ADG was related to the parenchymal epithelial area and DNA and protein f and FSR (p < 0.05). These relationships support the idea that the nutritional environment affects early mammary development and that higher lysine levels in the perinatal period favored a greater degree of cell division versus differentiation in mammary of neonatal pigs and thus, warrant further investigations.

Highlights

  • The first days postnatal are a critical period of metabolic-nutritional programming in pigs

  • The homogenate colostrum sample that was fed to neonates was 10.1% fat and 9.8% protein, and the insulin concentration was 289 milli-international units per liter in whole colostrum and 312 mIU/mL in skimmed colostrum

  • From day two postnatal to study completion on postnatal day seven, there was no significant difference in average daily gain (ADG) between COL10 and COL20 animals

Read more

Summary

Introduction

The first days postnatal are a critical period of metabolic-nutritional programming in pigs. Of particular interest to this study is the relationship between early nutritional environment and future lactation performance. Greater colostrum intake by gilts was related to earlier puberty and better lactation performance (as sows) than the low colostrum intake counterparts [1]. Studies in sheep showed the nutrition of ewes during pregnancy affected the yield and composition of milk produced by the offspring [2,3]. The preweaning growth rate of heifers was positively related to their milk production as cows [4]. Heifer dairy calves fed two liters of colostrum produced less milk in their first and second lactations than calves who were fed four liters [5]. The lower milk production was related to greater rates of morbidity and lower body weights of calves. Heifer calves fed restricted versus ad libitum intake of milk replacer had less mammary gland mass, mammary parenchyma, fat pad mass, and lower expansion of epithelium into the adjacent stromal tissue [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call