Abstract

BackgroundThe Six1 homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy. However, Six1 is re-expressed in breast cancers, suggesting that its re-instatement in the adult mammary gland may contribute to breast tumorigenesis via initiating a developmental process out of context. Indeed, recent studies demonstrate that Six1 overexpression in the adult mouse mammary gland is sufficient for initiating invasive carcinomas, and that its overexpression in xenograft models of mammary cancer leads to metastasis. These data demonstrate that Six1 is causally involved in both breast tumorigenesis and metastasis, thus raising the possibility that it may be a viable therapeutic target. However, because Six1 is highly expressed in the developing mammary gland, and because it has been implicated in the expansion of mammary stem cells, targeting Six1 as an anti-cancer therapy may have unwanted side effects in the breast.ResultsWe sought to determine the role of Six1 in mammary development using two independent mouse models. To study the effect of Six1 loss in early mammary development when Six1 is normally expressed, Six1-/- embryonic mammary glands were transplanted into Rag1-/- mice. In addition, to determine whether Six1 downregulation is required during later stages of development to allow for proper differentiation, we overexpressed Six1 during adulthood using an inducible, mammary-specific transgenic mouse model. Morphogenesis of the mammary gland occurred normally in animals transplanted with Six1-/- embryonic mammary glands, likely through the redundant functions of other Six family members such as Six2 and Six4, whose expression was increased in response to Six1 loss. Surprisingly, inappropriate expression of Six1 in the adult mammary gland, when levels are normally low to absent, did not inhibit normal mammary differentiation during pregnancy or lactation.ConclusionsSix1 is not critical for normal mammary gland development, since neither loss nor inappropriate overexpression of Six1 adversely affects normal mammary gland development or function. However, as both Six2 and Six4 levels are increased in Six1-/- mammary glands, we postulate that these Six family members are functionally redundant in the gland, as is true of many homeobox gene families. This data, in conjunction with recent findings that Six1 is capable of promoting breast cancer initiation and progression, suggest that Six1 may serve as a reasonable chemotherapeutic target in a clinical setting, particularly for those women diagnosed with breast cancer in their childbearing years.

Highlights

  • The Six1 homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy

  • We recently demonstrated that Six1 overexpression in the mouse mammary gland is sufficient to induce tumorigenesis, leading to highly aggressive and invasive mammary tumors, many of which undergo an epithelial to mesenchymal transition (EMT) [30]

  • Immunofluorescence analysis was performed on mammary glands isolated from Six1 heterozygote females, in which enhanced green fluorescent protein (EGFP) had been knocked into the Six1 locus [16]

Read more

Summary

Introduction

The Six homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy. Recent studies demonstrate that Six overexpression in the adult mouse mammary gland is sufficient for initiating invasive carcinomas, and that its overexpression in xenograft models of mammary cancer leads to metastasis These data demonstrate that Six is causally involved in both breast tumorigenesis and metastasis, raising the possibility that it may be a viable therapeutic target. Homeodomain-containing transcription factors are “master regulators” of normal development, controlling important cellular mechanisms, such as proliferation, differentiation, apoptosis, cell shape, cell adhesion and migration [1] In addition to their important roles in normal development, numerous homeobox genes are misexpressed in both solid tumors [2,3] and hematopoietic malignancies [4], where it is thought that they impact neoplastic disease by reinitiating their developmental programs [1]. Six may play additional roles during development, since Six knockout mice display significant defects in the differentiation of epibranchial progenitor cells into sensory ganglia [19], and since loss of Six in combination with loss of Six leads to defects in muscle cell differentiation and migration [23]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call