Abstract

Vesicle traffic propagates and maintains distinct subcellular compartments and routes secretory products from their site of synthesis to their final destinations. As a basis for the specificity of vesicular transport reactions, each step in the secretory pathway appears to be handled by a distinct set of evolutionarily conserved proteins. Mammalian proteins responsible for vesicle trafficking at early steps in the secretory pathway are not well understood. In this report, we describe rat sec22 (rsec22) and rat bet1 (rbet1), mammalian sequence homologs of yeast proteins identified as mediators of endoplasmic reticulum-to-Golgi protein transport. rsec22 and rbet1 were expressed widely in mammalian tissues, as anticipated for proteins involved in fundamental membrane trafficking reactions. Recombinant rsec22 and rbet1 proteins behaved as integral membrane components of 28 and 18 kDa, respectively, consistent with their primary structures, which contain a predicted transmembrane domain at or near the carboxyl terminus. Recombinant rsec22 and rbet1 had distinct subcellular localizations, with rsec22 residing on endoplasmic reticulum membranes and rbet1 found on Golgi membranes. Studies with brefeldin A and nocodazole indicated that rbet1 function might involve interaction with or retention in the intermediate compartment. The distinct localizations of rsec22 and rbet1 may reflect their participation in opposite directions of membrane flow between the endoplasmic reticulum and Golgi apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.