Abstract

Maltol (3-hydroxy-2-methyl-4-pyrone), a product of carbohydrate degradation, is known to enhance aluminium-induced neurofibrillary degeneration in neuronal systems, but few toxicological studies have been conducted. We report maltol toxicity in neuroblastoma cell lines of mouse (Neuro 2a) and human (IMR 32) origin, and in primary murine fetal hippocam-pal neuronal cultures. As determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] conversion, maltol exhibited a dose-dependent toxicity on the viability of both neuroblastoma cell lines, but the toxicity was more pronounced in Neuro 2a cells. Maltol was also toxic in a dose-dependent manner in primary murine fetal hippocampal neurons at micromolar concentrations. Electrophoresis of DNA extracted from maltol-intoxicated cells showed a laddering pattern, suggestive of apop-totic cell death. In the maltol-exposed hippocampal neuronal cultures, fragmented DNA ends were visualized in situin morphologically condensed nuclei by terminal deoxynucleotidyl transferase with digoxigenin-labelled UTP and subsequent immunohistochemistry. Collectively, our findings suggest that the toxic effect of maltol is mediated through apoptosis. Further toxicological investigations are warranted, since maltol is found in the daily diet of humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.