Abstract
Protandry (prior emergence of males) in insect populations is usually considered to be the result of natural selection acting directly on eclosion timing. When females are monandrous (mate once), males in high density populations benefit from early emergence in the intense scramble competition for mates. In low density populations, however, scramble competition is reduced or absent, and theoretical models predict that protandry will be less favoured. This raises the question of how males behave in heterogeneous landscapes characterized by high density core populations in a low density continuum. We hypothesized that disadvantaged late emerging males in a core population would disperse to the continuum to find mates. We tested this idea using the protandrous, monandrous, pierid butterfly Anthocharis cardamines (the orange-tip) in a core population in Cheshire, northwest England. Over a six-year period, predicted male fitness (the number of matings a male can expect during his residence time, determined by the daily ratio of virgin females to competing males) consistently declined to <1 in late season. This decline affected a large proportion (∼44%) of males in the population and was strongly associated with decreased male recapture-rates, which we attribute to dispersal to the surrounding continuum. In contrast, reanalysis of mark-release-recapture data from an isolated population in Durham, northeast England, showed that in the absence of a continuum very few males (∼3%) emerged when fitness declined to <1 in late season. Hence the existence of a low density continuum may lead to the evolution of plastic dispersal behaviour in high density core populations, maintaining late emerging males which would otherwise be eliminated by selection. This has important theoretical consequences, since a truncated male emergence curve is a key prediction in game theoretic models of emergence timing which has so far received limited support. Our results have implications for conservation, since plastic dispersal behaviour in response to imperfect emergence timing in core (source) populations could help to maintain sink populations in heterogeneous landscapes which would otherwise be driven to extinction by low mate encounter-rates (Allee effects).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.