Abstract

Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own “in-house strains”. During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable “brewing yeast” spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

Highlights

  • The major parameters defining a beer type comprise process parameters and the ingredients malt, hops and yeast used [1]

  • 32 top-fermenting brewing yeast strains of the species Saccharomyces (S.) cerevisiae, 7 yeast strains of S. cerevisiae var. diastaticus and 13 bottom-fermenting S. pastorianus strains were obtained by the Research Center Weihenstephan for Brewing and Food quality (BLQ) (Table 1)

  • A sub-proteome spectra database was established for brewing yeasts of the major beer types, and for the beer spoilage microorganism S. cerevisiae var. diastaticus

Read more

Summary

Objectives

The aim of this study was to provide proof of concept for the discriminatory power of MALDI-TOF MS to categorize Saccharomyces yeasts along their potential for specific applications

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call